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Abstract

In many engineering applications, including surveillance, guidance, or navigation, single stand-alone sen-
sors or sensor networks are used for collecting information on time varying quantities of interest, such as
kinematical characteristics and measured attributes of moving or stationary objects of interest (e.g. maneu-
vering air targets, ground moving vehicles, or stationary movers such as a rotating antennas).

More strictly speaking, in these applications the state vectors of stochastically moving objects are to be
estimated from a series of sensor data sets, also called scans or data frames. The individual measurements
are produced by the sensors at discrete instants of time, being referred to as scan or frame time, target revisit
time, or data innovation time. These output data (sensor reports, observations, returns, hits, plots) typically
result from complex estimation procedures themselves characterizing particular waveform parameters of the
received sensor signals (signal processing).

In case of moving point-source objects or small extended objects, i.e. typical radar targets, often rela-
tively simple statistical models can be derived from basic physical laws describing their temporal behavior
and thus defining the underlying dynamical system. In addition, appropriate sensor models are available
or can be constructed, which characterize the statistical properties of the produced sensor data sufficiently
correct.

As an introduction to target tracking and data fusion applications characteristic problems occurring in
typical radar applications are presented; key ideas relevant for their solution are discussed.
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1 Adaptive Tracking for Phased-array Radar

Modern phased-array radars call for tracking algorithms that efficiently exploit all degrees of freedom avail-
able, which are variable over a wide range and can be chosen individually for each track. This is particularly
true for military air situations where both, agile targets and targets significantly differing in their radar cross
section, must be taken into account. Unless properly handled, such situations can be highly allocation time
and energy consuming. In this context adaptive techniques for combined tracking and sensor management
are discussed, i.e. control of data innovation intervals, radar beam positioning, and transmitted energy. By
efficient exploitation of the limited resources the total surveillance performance of the sensor system can be
improved.

1.1 General Overview

In military applications often distinct maneuvering phases exist as even agile targets do not permanently
maneuver. Nevertheless, abrupt transitions to high-g turns can well occur. Allocation time and energy
savings are thus to be expected if adaptive target dynamics models are used[2, 4, 11, 20], such as Interacting
Multiple Model (IMM). Besides their kinematical characteristics, the mean radar cross section (RCS) of the
targets is usually unknown and variable over a wide range. By processing of signal amplitude information,
however, the energy spent for track maintenance can be adapted to the actual target strength. Also by this
measure the total sensor load can significantly be reduced.

Due to the locally confined target illumination by the pencil-beam of a phased-array, abrupt transitions
into maneuvering flight phases are critical as, in contrast to conventional radar, a periodic target illumination
is no longer guaranteed. Any track reiinitiation is thus highly allocation time and energy consuming and
in addition locks the sensor for other tasks (e.g. weapon guidance). This calls for intelligent algorithms for
beam positioning and local search [8] that are crucial for phased-array tracking.

For radars scanning the field of view at a constant rate (TWS: Track-while-scan), the BAYESian track-
ing techniques, discussed in the first talk provide an iterative updating scheme for conditional probability
densities of the target state given all sensor data and a priori information available. In those applications
data acquisition and tracking are completely decoupled. For phased-array radar, however, the current signal-
to-noise ratio of the target (i.e. the detection probability) strongly depends on the correct positioning of the
pencil-beam which is now taken into the responsibility of the tracking system. Thus sensor control and
data processing are closely interrelated. This basically local character of the tracking process constitutes the
principal difference between phased-array and TWS applications from a tracking point of view. By using a
suitable sensor model, however, this fact can be incorporated into the BAYESian formalism.

Figure 1 provides a simplified schematic overview of phased-array radar function control with the corre-
sponding flow of information.

1.2 Modeling Assumptions

Resource management for a multi-functional phased-array radar certainly depends on the particular appli-
cation considered. We here discuss track maintenance for ground-based air surveillance while minimizing
the allocation time and energy required. The track accuracy is important only in so far as stable tracks are
guaranteed. Track initiation or implementation issues are not addressed here. To make the benefits of IMM
modeling and amplitude information clearly visible, false detections (clutter, ECM), data association con-
flicts, or possibly unresolved measurements were excluded from the discussion. Nevertheless, their impact
might well be incorporated into the general BAYESian framework sketched in the first talk (see also [7]).
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Figure 1: Phased-Array Radar Function Control (Flow of Information)

1.2.1 Resource Allocation

In phased-array tracking additional sensor information can be acquired when needed. Before each ‘radar
resource allocation’ [4] certain radar parameters must be selected by the tracking system depending on the
current lack of information. We here consider the target revisit time tk , the current beam position bk and
the transmitted energy per dwell ek. Other parameters, such as detection threshold λD or beam width B,
are assumed to be constant. After processing the skin echo, the resource allocation Rk at time tk results in
measurements of direction cosines and target range, zk = (ūk, v̄k, r̄k), along with the signal amplitude ak.
Possibly a single dwell is not sufficient for target detection and a subsequent fine localization. Let nbk denote
the number of dwells for a successful detection along with the corresponding beam positions Bk = {bi

k}
nbk
i=1.

Each allocation is thus characterized by the tuple Rk = (tk, Bk, nbk , ek, zk, ak). The sequence of successive
allocations is denoted by Zk = {Rk,Zk−1}.

1.2.2 RCS Fluctuations

The instantaneous radar cross section σk of realistic targets strongly depends on the radar frequency used
and the current aspect angle. For this reason, statistical models are used for describing the backscattering
properties of the targets. In many practical cases σk is described by gamma-densities:

p(σk |σ̄, m) = Gm
(
σk; σ̄

)
(1)

=
(m/σ̄)m

Γ(m)
σm−1
k e−σk (m/σ̄). (2)

In this equation σ̄ denotes the mean RCS of the target that is usually unknown, but constant in time and char-
acteristic of a certain class of targets. The individual samples σk are assumed to be statistically independent
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for subsequent dwells (guaranteed by frequency decorrelation, e.g.). The cases m = 1, 2 are referred to as
Swerling-I and -III fluctuations[3].

Let the instantaneous target signal vk = (v1, v2) be additively corrupted by GAUSSian noise with variance
σ2
n . As the signal components are assumed to be statistically independent, the pdf of the resultant signal

sk = (s1, s2) is therefore given by a product of GAUSSians:

p(sk|vk) = N
(
s1; v1, σ

2
n

)
N
(
s2; v2, σ

2
n

)
. (3)

The normalized scalar quantity a2
k = (s2

1+s
2
2)/2σ2

n derived from the vector signal sk is RICEian distributed[3]:

p(a2
k|snk) = e−a

2
k−snk I0

(
2ak
√

snk
)

with: snk = (v2
1 + v2

2)/2σ2
n . (4)

Hence, snk denotes the instantaneous signal-to-noise ratio of the target being proportional to σk. Its expec-
tation with of respect to p(a2

k|snk) is � [a2
k ] = 1 + snk; pure noise (snk = 0) has thus unit power. Due to the

RCS model previously discussed, snk is gamma-distributed with the mean SN: p(snk|SN) = Gm
(
snk; SN

)
.

The conditional density of a2
k given SN is thus obtained by [1]:

p(a2
k|SN) =

∫∞
0 dsnk p(a2

k|snk) p(snk|SN) (5)

=
(
m+SN
m

)−m
e−ma

2
k/(m+SN) Lm−1

(−a2
kSN

m+SN

)
, (6)

where Lm−1 denotes the Laguerre polynomials. For Swerling-I/III: L0(−x) = 1, L1(−x) = 1+x. Evidently,
p(a2

k|SN) can be interpreted as a gamma mixture with � [a2
k ] = 1 + SN.

1.2.3 Signal-to-Noise Ratio

Any sensor model for phased-array tracking has to provide a functional relationship between the expected
signal-to-noise ratio SNk at time tk, the sensor parameters (transmitted energy, beam position) and the target
parameters (mean RCS, target position). With a GAUSSian beam form[8] and using the radar range equation
we assume:

SNk = SN0
(
σ̄
σ̄0

) ( ek
e0

) ( rk
r0

)−4
e−2∆bk (7)

with ∆bk = (uk − buk)2/Bk + (vk − bvk)2/B2. (8)

rk is the actual target range at time tk while uk , vk denote the related direction cosines. With the beam
position bk = (buk, b

v
k) and the (one-sided) beam width B, ∆bk is a measure of relative beam positioning

error. The radar parameter SN0 is the expected mean signal-to-noise ratio of a target with a standard mean
cross section σ̄0 at a reference range r0 that is directly (∆bk = o) illuminated by the beam with the energy
e0. Due to the functional relationship stated in Equation 6 the signal strength a2

k can be interpreted as a
measurement of σ̄.

1.2.4 Detection/Measurements

A detection is assumed if the received signal strength exceeds a certain detection threshold: a2
k > λD. For a

given m in the fluctuation model (Equation 2), the detection probability PD is a function of SN and λD:

PD(SN, λD, m) =
∫∞
λD
da2

k p(a2
k|SN). (9)

The false alarm probability PF is analogously obtained:

PF (λD) = PD(0, λD, m) = e−λD . (10)
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Integration results in explicit expressions for PD[3]. For Swerling-I/III fluctuations we obtain:

P I
D(SN, λD) = e−

λD
1+SN = P

1
1+SN
F (11)

P III
D (SN, λD) = e−

λD
1+SN/2

(
1 + (SN/2)λD

(1+SN/2)2

)
. (12)

For target tracking a2
k is available after a detection, i.e. a2

k > λD. We thus need the conditional density:

p(a2
k|a

2
k > λD,SN, m) =

{
p(a2

k|SN)/PD(SN, λD, m) for a2
k > λD

0 for a2
k ≤ λD

. (13)

For strong targets we can assume SN ≈ 1 + SN ≈ . . . ≈ m + SN and thus approximately obtain:

p(a2
k|SN) ≈

(SN
m

)−m
e−ma

2
k/SN Lm−1

(
− a2

k

)
(14)

(see Equation 6). On the other hand, let the detection probability for m �= 1 be approximately given by:
PD(SN, λD, m) ≈ P I

D(SN, λD) (i.e. Swerling I). We can therefore write:

p(a|a2
k > λD,SN, m) ≈ Sm

(
a2
k; SN

)
(15)

with Sm
(
a2
k; SN

)
=

{(SN
m

)−m
e−(ma2

k+λD )/SN Lm−1
(
− a2

k

)
for a2

k > λD

0 for a2
k ≤ λD.

(16)

Let us assume that monopulse localization after detection result in bias-free measurements u′k, v′k of the
direction cosines and range with GAUSSian measurement errors. According to [3] the standard deviations
σu,v
k depend on the beam width B and the instantaneous snk in the following manner: σu,v

k ∝ B/
√

snk ≈
B/
√
a2
k − 1. As snk is unknown, in the last approximation a2

k is used as a bias-free estimate of snk (� [a2
k ] =

1 + snk). The range error is assumed to be GAUSSian with a constant standard deviation σr. Evidently, this
model of the measurement process does not depend on the RCS fluctuation model.

1.2.5 IMM Dynamics Model

Systems with MARKOVian switching coefficients [2] are well-suited for modeling the different phases in a
mission. They are represented by multiple dynamics models with a given probability of switching between
the models. Let ik denote the dynamics model indexed by ik at time tk. The transition probabilities are thus
part of the modeling assumptions, however a priori unknown in a real application. Fortunately, the tracking
performance does not seem to depend critically on their particular choice [4]. The related MARKOV process
is described by:

p(xk, ik|xk−1, ik−1) = pikik−1 N (xk; Fikxk−1, Qik ), 1 ≤ ik, ik−1 ≤ r. (17)

Hence, the model jump process is a MARKOV chain with model transition probabilities pikik−1 = p(ik|ik−1),
the individual models being linear-GAUSSian. Fik denotes the evolution matrix, while Dik reflects the ma-
neuvering capability of the model indexed by ik.

1.3 Adaptive Track Maintenance

As discussed in the previous talk, tracking is an iterative updating scheme for conditional probability den-
sities p(xk|Zk) that describe the current target state xk given all available resource allocations Zk and the
underlying a priori information in terms of statistical models. Essentially, the update consists of a prediction
step followed by filtering. The knowledge of the target state at time tk before a new allocation has taken
place is given by p(xk+1|Zk). Allocation decisions for a certain time must thus be based on this density that
essentially depends on the underlying dynamics model.
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1.3.1 BAYESian IMM-MHT

Due to the Total Probability Theorem, dynamics modeling according to IMM results in finite mixture densi-
ties:

p(xk|Zk) =
∑
ik

p(xk |ik,Zk) p(ik|Zk) (18)

with ik = {ik, . . . , i1} denoting a particular model history, i.e. a sequence of possible hypotheses regard-
ing the target dynamics model from the initial observation up to the most recent measurement at time tk.
This is in analogy to the discussion in the previous talk. As the number of terms in Equation 18 exponen-
tially increases with increasing k, various techniques have been developed for approximately representing
p(xk|Zk) by mixtures with a constant number of components at each tk. With ikn = {ik, . . . , ik−n+1} denoting
a sequence of possible model hypotheses “n scans back”, we are looking for approximations by Normal
Mixtures,

p(xk |Zk) ≈
∑
ikn

µikn N (xk ; xikn , Pikn ), (19)

with µikn = p(ikn |Zk) and N (xk ; xikn , Pikn ) = p(xk|ikn ,Zk). Due to BAYES’ Rule, xikn and Pikn of each mixture
component are iteratively obtained by formulae essentially based on KALMAN filtering. Also the weighting
factors µikn obey simple formulae[2, 16]. In case of a single dynamics model (r = 1), the conditional densities
p(xk|Zk) are strictly given by GAUSSians; i.e. the filtering loop is simply KALMAN filtering.

For n = 1, p(xk |Zk) is approximated by a mixture with r components according to the r dynamics
models used. GPB2 and standard IMM algorithms are possible realizations of this scheme [2]. For standard
IMM the approximations are made after the prediction, but before the filtering step, while for GPB2 they
are applied after the filtering step. Hence, GPB2 requires some more computational effort. More generally
speaking, the basic idea of standard IMM (moment matching directly after the prediction step) may easily
be adopted to n > 2 providing a more accurate approximation of the densities p(xk |Zk) than for n = 2. At
each stage k of the tracking loop the parameters µikn , xikn , Pikn approximately represent the density p(xk |Zk).

1.3.2 RCS as a State Variable

Let us treat the normalized mean RCS of the target, sk = σ̄k/σ̄0, as an additional component of the state
vector. As the signal strength after detection may be viewed as a measurement of sk , let us consider the
conditional density p(xk, sk|Zk) = p(sk|xk,Zk)p(xk |Zk). The calculation of p(xk |Zk) was discussed above.
For p(sk |xk,Zk) BAYES’ Rule yields up to a normalizing constant:

p(sk|xk, a2
k,Z

k−1) ∝ Sm
(
a2
k; SN

)
p(sk|xk,Zk−1). (20)

Let us assume that p(sk|xk,Zk−1) are given by inverse gamma densities:

p(sk|xk,Zk−1) = Iµk|k−1

(
sk; ŝk|k−1

)
(21)

with: Iµ
(
s; ŝ
)
=
[
((µ − 1)ŝ)µ/Γ(µ)

]
s−µ−1 e−

(µ−1)ŝ
s (22)

defined by ŝ = � [s] > 0 and a parameter µ > 1. For µ > 2 the related variance exists: �[s] = ŝ2/(µ − 2).
This class of densities is invariant under the successive application of BAYES Rule according to Equation 20,
for up to normalization we obtain:

Sm
(
a2
k; SN

)
Iµk|k−1

(
sk; ŝk|k−1

)
∝

α−mk s
−µk|k−1−m−1
k exp

(
−

(µk|k−1−1)ŝk|k−1+
ma2

k
+λD
αk

sk

)
∝ Iµk

(
sk; ŝk

)
(23)
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with: αk = SN0
( ek
e0

) ( rk
r0

)−4
e−2∆bk (24)

ŝk = µk|k−1−1
µk|k−1+m−1 ŝk|k−1 +

(ma2
k+λD )/αk

µk|k−1+m−1 (25)

µk = µk|k−1 + m. (26)

With reference to sk the density Iµk
(
sk; ŝk

)
is correctly normalized. Due to αk = αk(rk, uk, vk), however,

it depends on the target position. In order to preserve the factorization of p(xk, sk|Zk) in a normal mixture
related to xk and an inverse gamma density related to sk we use the approximation:

αk ≈
( ek
e0

) ( r̂k
r0

)−4
e−2{(ûk−buk )2+(v̂k−bvk )2}/B2

. (27)

r̂k, ûk, v̂k are the MMSE estimates for rk , uk and vk derived from p(xk |Zk). Hence, αk compensates both, the
estimated positioning error of the radar beam and the propagation loss due to the radar equation. Assuming
sk to be constant, we have Iµk|k

(
sk; ŝk|k−1

)
= Iµk|k−1

(
sk; ŝk−1

)
. In principle, a dynamics regarding the cross

section might be introduced.

1.4 Adaptive Sensor Control

Based on the previous considerations adaptive techniques for combined tracking and sensor management are
discussed, i.e. control of data innovation intervals, radar beam positioning, and transmitted energy [17, 19].

1.4.1 Revisit Time Control

The time tk of a radar allocation Rk is determined by the current lack of information conveniently described
by the covariance matrix Pk|k−1 of the predicted state estimate xk|k−1 [8]. Since the predicted pdf,

p(xk |Zk−1) =
∑

ikn

µ
ikn
k|k−1 N (xk; x

ikn
k|k−1, P

ikn
k|k−1), (28)

is a normal mixture, we obtain:

Pk|k−1 =
∑
ikn

µ
ikn
k|k−1

(
P

ikn
k|k−1 + (x

ikn
k|k−1 − xk|k−1) (x

ikn
k|k−1 − xk|k−1)�

)
. (29)

The covariance of the individual mixture components the faster grow in time the more often maneuvers were
assumed in the corresponding model histories. This has impact on the total covariance Pk|k−1 according to
the corresponding weighting factors. In addition Pk|k−1 is “broadened” by the positive definite spread term.
Evidently, the adaptive IMM modeling affects Pk|k−1 in a rather complicated way. A scalar measure of the
information deficit is provided by the largest eigenvalue of the covariance of the predicted target direction
(in terms of u, v). Let it be denoted by Gk|k−1. A track update is allocated when the Gk|k−1 exceeds a
predetermined proportion of the squared radar beam width B:

Gk|k−1 > (v0B)2. (30)

The relative track accuracy v0 introduced by this criterion is a measure of the minimum track quality required
and a parameter to be optimized. In many practical applications v0 = 0.3 is a reasonable choice [8].

1.4.2 Transmitted Energy

In view of the tracking system the sensor performance is mainly characterized by the signal-to-noise ratio that
determines both, the detection probability and the measurement error. By suitably choosing the transmitted
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energy per dwell ek, the expected signal-to-noise ratio SNk|k−1 can be kept constant during tracking. Besides
v0, SNk|k−1 is an additional parameter subject to optimization. Since v0 may be viewed as a measure of the
beam positioning error, the energy ek at time tk is defined by this condition (Equation 8):

SNk|k−1
!
= const. (31)

→ ek
e0

=
( SN0

SNk|k−1

) ( σ̄0
σ̄

) ( r̂k|k−1

r0

)4
e2v2

0 . (32)

By this particular choice the influence of the radar range equation is compensated (at least for a certain
range interval). For the mean radar cross section σ̄ either a worst-case assumption or estimates from target
amplitude information can be used. Also the track quality v0 affects the transmitted energy. As a side effect
of this choice, the standard deviations σu,v

k of the u, v-measurements are kept constant on an average.

1.4.3 BAYESian Local Search.

Intelligent algorithms for beam positioning and local search are crucial for IMM-type tracking. Too simple
strategies may easily destroy the benefits of the adaptive dynamics model, because track loss immediately
after a model switch is to be expected. For this reason the optimal approach based on the predicted densities
p(xk|Zk−1) proposed in [8] is adopted to IMM tracking. The beam position of the first dwell is simply
given by predicted direction ûk|k−1, v̂k|k−1 derived from p(xk|Zk−1). If no detection occurs in the first dwell,
however, this very result provides useful information on the target state. We thus have to calculate the
conditional density given the event ¬D “no detection in this direction”. BAYES’ Rule yields:

p(uk, vk|¬D,Zk−1) ∝ (1 − PD(uk, vk)) p(uk, vk|Zk−1) (33)

up to a normalizing factor. In this density the detection probability PD depends on the expected signal-
to-noise ratio (Equation 8). By this the fluctuation model for the target RCS enters the discussion as it
determines the functional forms of PD (Equation 12). The two dimensional density p(uk, vk|¬D,Zk−1) can
easily be calculated on a grid. The beam position for the next dwell is then simply provided by the maximum
of p(uk, vk|¬D,Zk−1). This scheme is repeated until a detection occurs. Since the maximum is searched, the
computation of the normalization integral is not required. Numerically efficient realizations are possible.

Figure 2 illustrates this scheme for one of the examples discussed below. First the predicted target pdf (a
mixture) is shown as a function of its direction coordinates. With high probability the target is expected to be
in the dark region, the true target position being indicated by a dark grey dot. The light dot denotes the beam
position of the next dwell. The related detection probability is 26%. However, no detection occurred during
the first dwell. We thus calculate the conditional pdf given that event. The resulting pdf differs significantly.
The previous maximum decreased in height, while the global maximum is at a different location. Again
no detection occurred; the resulting pdf is showed next. Now the algorithm decides to look again near the
position at dwell 1. In addition, two smaller local maxima appear that increase in size at the next dwell as no
detection occurred. We finally obtain a decision which leads to success. The last picture shows the updated
pdf.

1.5 Discussion: Simulated Examples

Simulation results provide hints to what extend the total performance of multiple-target air surveillance by
phased-array might be improved by using adaptive techniques for combined tracking and sensor control.
Four questions are addressed:

1. Which resource savings (allocation time, energy) can be expected by using adaptive dynamics models?

2. How should the IMM dynamics modeling be designed (e.g. number of models, transition matrix)?
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Figure 2: BAYESian local search: five consecutive dwells
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Figure 3: Horizontal projections and kinematical quantities

3. Which energy savings can be expected by exploiting target amplitude information for sensor control?

4. Why is BAYESian local search important when IMM dynamics models are used for revisit time con-
trol?

In general we follow the parameter and threshold settings recommended in[8]. To exclude false alarms
due to receiver noise, the false alarm probability is PF = 10−4. False returns due to clutter or ECM are not
considered. The error of range measurements (standard deviation) is σr = 100 m, the radar beam width
B = 1◦. We assume a minimum time interval of 20 ms between consecutive dwells on a particular target
and statistically independent signal amplitudes (frequency decorrelation, e.g.). The reference range is set
to r0 = 80 km. Antenna coordinates (direction cosines, range) are used also for tracking; non-linearities
introduced by these no-Cartesian coordinates are taken into account [7]. The maneuvering capability of the
targets is thus characterized by two parameters: maneuver correlation time θ and acceleration width Σ. For
r = 2, 3 we consider the parameter sets:
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M1 (worst-case model): Σ1 = 60 m/s2, θ1 = 30 s

M2 (best-case model): Σ2 = 1 m/s2, θ2 = 10 s

M3 (medium-case model): Σ3 = 30 m/s2, θ3 = 30 s

(pij) =
(
.8 .1
.2 .9

)
, (pij) =

(
.8 .1 .0
.0 .9 .2
.2 .0 .8

)
.

We observed that the performance does not critically depend on the particularly switching probabilities pij
chosen. A detailed mismatch analysis, however, has not been performed. A track is considered to be lost if
more than 50 dwells occur in the local search of if the beam positioning error ∆bk is greater than 3B. We
thus permit even a rather extensive local search that correspondingly burdens the total energy budget. In all
simulations considered below (1000 runs) the relative frequency of track loss is less than 2%.

1.5.1 Benchmark Trajectories

The horizontal projection of four standard benchmark trajectories (military cargo aircraft, medium bomber,
fighter/attack aircraft, and anti-ship missile) is shown in Figure 3 along with representative kinematical char-
acteristics such as acceleration (solid line), range (dashed), height (dotted), and speed (solid). They have
been proposed in [5, 6] and cover a rather wide range of militarily relevant targets. The missile trajectory
might serve to explore the performance limits of the algorithms. In principle, missiles can execute even
stronger maneuvers. It is questionable, however, if for those objects and their individual missions the dy-
namics models discussed above remain applicable. All targets are tracked over a period of 180 s. The RCS
fluctuations are described by a Swerling-III model. The mean cross sections significantly vary from target to
target (4., 2., 1.2, .5 m2).

The discussion is confined to a few intuitively clear and simple performance measures obtained by
Monte-Carlo simulation (1000 runs). In general a single performance measure is not sufficient as there
may exist applications where the transmitted energy is the limiting factor, while in a different scenario the
number of radar allocations must be kept low.

The adaptivity becomes visible if the performance is evaluated as a function of the tracking time that can
be compared with the kinematics of the individual trajectories (Figure 3). Here we used histograms with 100
cells. In particular we considered: the mean revisit intervals, the mean number of dwells for a successful
update, the mean number of sensor allocations totally required for track maintenance, the mean energy spent
for a successful allocation, the mean energy totally spent for track maintenance, and the mean RCS of the
targets estimated during tracking.

Four tracking filters were compared: worst-case KALMAN filter (KF), standard IMM filter with two or
three models, respectively (S-IMM2,3), and IMM-MHT filtering with model histories of length n = 4. For
IMM-MHT with n > 4 the performance characteristics only slightly change. We thus conclude that n = 4
already provides a good approximation to optimal filtering (at least for the scenarios considered here). With
reference to target amplitude information we considered three cases: 1) the target RCS σ̄ is known and
used for energy management. 2) The mean RCS σ̄ is unknown and to be estimated during tracking. 3) A
worst-case assumption is used for all targets (σ̄ = 0.5 m2).

1.5.2 Design of IMM modeling

Practically, the question arises how many models should be used in the IMM approach. In addition it must be
clarified if each trajectory needs an individual modeling or if the same IMM modeling can be used without
significant loss of performance. For the fighter scenario a worst/best-case model should be appropriate at first
sight. Trajectory 1 (Cargo Aircraft), however, shows that military targets can occur for which medium-case
models are sufficient. To answer these questions we used IMM with two (r = 2, M1, M2) and three models
(r = 3, M1, M2, M3), respectively, with v0 = 0.3, SNk|k−1 = 50. In which way these parameters affect the
performance is discussed further below. Figure 4 (first row) shows the resulting mean revisit intervals for all
trajectories. The kinematical target characteristics are clearly mirrored. We observed:
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Figure 4: Revisit intervals, allocations, and energy for different filters and trajectories
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1. As expected, KALMAN filtering (r = 1, M1) leads to constant revisit intervals that are comparable for
all trajectories. This is no longer true for S-IMM. The resultant curves related to r = 2 (solid) and
r = 3 (dashed) significantly differ from each other. The onset of maneuvers (Figure 3) strongly affects
the mean update intervals and thus illustrates the adaptivity of the algorithm.

2. The difference between the cases r = 2, 3 vanishes however, if IMM-MHT is used. If model histories
are permitted (here n = 4), it seems to be irrelevant if besides worst/best-case assumption additional
medium-case models are used. Even longer histories or further models (r > 3) do not significantly
improve the performance obtained with r = 2 and n = 4. For a suitable (!) choice of the switching
probabilities the performance of S-IMM4 approaches closes to B-IMM2; for B-IMM4 no improvement
over B-IMM2 was observed.

3. For the bomber and the fighter S-IMM3 (M1, M2, M3) outperforms S-IMM2 (M1, M2), in spite of the
fact that for these trajectories worst-case maneuvers occur only and the medium-case model appeared
to be unnecessary at first sight. The difference between r = 2 and r = 3, however, is not as clear as for
scenario 1 (cargo aircraft).

4. For the moderately maneuvering cargo aircraft the question arises if the performance can be im-
proved by using a medium/best-case IMM modeling. We found that worst/best-case IMM-MHT and
medium/best-case IMM-MHT differ, but not very much. This indicates that worst/best-case IMM-
MHT has a more or less “universal” character, i.e. it does not critically depend of the scenario
considered (at least within certain limits).

These observations indicate that the mixtures p(xk|Zk) for n = 4, r = 2 have enough internal degrees of
freedom to provide an adequate representation of the actual target behavior. Refined approximations by
even more mixture components seem to be irrelevant for the trajectories considered. A Rule of thumb: A
worst/best-case analysis of the problem along with IMM-MHT seems to be sufficient to achieve a nearly
optimal tracking performance. Evidently, for two dynamics models reasonable and intuitive assumptions
for the switching probabilities are easily obtained. IMM-MHT thus enables a more simplified dynamics
modeling without significant loss of performance.

1.5.3 Gain by IMM modeling

For investigating the gain by adaptive dynamics models, let us for the present assume that the mean RCS
of the target is known and used for energy management. Figure 4 shows the mean number of allocations
required for track maintenance (KF, S-IMM2, B-IMM2). As expected, for KF the mean number of revisits
linearly increases with increasing tracking time and is nearly the same for all trajectories. By adaptive
dynamics modeling, however, the number of sensor allocations is reduced.

1. Compared with KF, IMM results in significant resource savings. There is an improvement by IMM-
MHT over S-IMM; the difference, however, is less significant than between S-IMM and KF. Besides
simplified modeling assumptions, the practical use of IMM-MHT therefore consists in the exploration
of the limiting bounds for performance improvements.

2. The largest gain is observed for the cargo aircraft and the bomber. In case of the fighter the allocations
required are reduced by about 50 % compared with worst-case KALMAN filtering. Even during the 7
g weaving of the missile some advantages of the IMM modeling can be observed.

Figure 4 (second row) also shows the mean number of dwells per revisit. Up to peaks corresponding with
the onset of maneuvers, it is constant and roughly equal for all filters and trajectories. The peaks are the
higher the more adaptivity the filter shows, i.e. the larger the revisit intervals can be during inertial flight.
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Figure 5: On the quality of RCS estimates

The peaks thus indicate that for abrupt maneuvers a local search might be required. This is the price to paid
for increased adaptivity. Evidently, intelligent algorithms for beam positioning and local search are essential
for IMM phased-array tracking.

These observations are consistent with Figure 4 (third row) which shows the mean energy spent for
track maintenance (relative units). Besides the target maneuvers these curves are influenced also by the
current target range (Figure 3, dotted line). In addition the mean energy spent per revisit is displayed. Up to
characteristic peaks the energy per revisit is roughly the same for all tracking filters.

1.5.4 Quality of RCS Estimates

In a practical application the mean RCS of the targets to be tracked is unknown and might be estimated from
target amplitude information. In general, the estimators used should be at least approximately bias-free, the
estimated error and the empirical error should be roughly identical, and the estimators should show a certain
robustness against model mismatch. As indicated by Figure 5, the estimator previously proposed provides
rather satisfying results for all trajectories. Using IMM-MHT for tracking, the recursion was initiated with
σ̄ = .5 m2 (worst-case assumption) and m0 = 1.01.

The solid lines show the mean RCS estimates as a function of the tracking time. For all scenarios it is
roughly constant and corresponds with the actual values (4, 2, 1.2, 0.5 m2). The dotted lines indicate the
mean estimation error (available in the simulation). The curves show peaks that are related to the onset
of maneuvers and the corresponding lack of track accuracy. The dashed lines denote the mean standard
deviation calculated by the estimator itself. Tracking and RCS estimation are closely interrelated: Only
when tracked over a certain period of time, estimates are reliable enough to distinguish between the target
classes. A satisfying RCS estimation by signal processing only, i.e. without a temporal integration along the
estimated trajectory does not seem to be possible. In this context IMM retrodiction techniques [16] might
be considered which can provide more accurate estimates of the trajectory and thus more accurate RCS
estimates.

1.5.5 RCS Model Mismatch

The backscattering properties of real targets are highly complex. A practicable method for estimating the
RCS must thus show some robustness against model mismatch. To get a first hint, we generated in our
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target type processed simulated RCS [m2] estimated error estimation error energy

Bomber III III 1.96 0.22 0.28 0.37
III I 2.34 0.25 0.57 0.42
I III 1.77 0.28 0.33 0.39
I I 2.03 0.32 0.34 0.44

Fighter III III 1.19 0.13 0.16 0.82
III I 1.41 0.15 0.34 1.
I III 1.07 0.16 0.19 0.86
I I 1.22 0.18 0.19 0.99

Table 1: Mismatch regarding the fluctuation model

simulation amplitude information according to both Swerling I and III being processed according to both
modeling assumptions. The results for the four possible combinations are summarized in table 1. Besides
the quantities already shown in Figure 5, we also listed the total energy spent for tracking (relative units).

1. For matching models the RCS estimates are nearly bias-free and more or less roughly consistent.

2. For Swerling III fluctuations the estimates are more accurate than in case of Swerling I.

3. For Swerling I (no mismatch) more energy is spent than for Swerling III (keeping SNk|k−1 constant).

4. If Swerling I amplitudes are processed according to Swerling III, the RCS is overestimated, consis-
tency is lost.

5. It is underestimated if Swerling III amplitudes are processed according to Swerling I.

6. Mismatch does not greatly affect the performance (energy).

1.5.6 Energy Management

Finally we have to show up to what degree the radar energy to be spent can be reduced by estimating the RCS
in comparison to worst-case assumptions. In Figure 5 the mean radar energy spent for track maintenance
is displayed. The dotted lines refer to IMM-MHT tracking using the true RCS of the targets (as previously
discussed). In a practical application this can not be realized; the resultant curves, however, may serve as
a reference to discuss the performance of RCS-adaptive algorithms. The solid lines denote methods that
exploit signal strength information for estimating the RCS (Worst-Case KALMAN filter, IMM-MHT). By
dashed lines algorithms are indicated that use a worst-case assumption (here: 0.5 m2, missile) on the RCS
(KF, IMM-MHT).

A comparison between sensor control by using the true RCS (not available in a real application) and
methods exploiting recursive RCS estimates is of particular interest. The largest deviation is observed for
scenario 1 (σ̄ = 4 m2). This is to be expected, as the recursion was started with a worst-case assumption.
The discrepancy between both curves, however, is not very significant in all four cases. Compared with
IMM-MHT (Worst-Case RCS) it can be neglected. The difference between sensor control with known
and estimated RCS is roughly constant during tracking. We thus conclude that it is caused primarily in
the initiation phase where not much signal strength information is yet available. As soon as reliable RCS
estimates have been produced, the performance is practically identical. Figure 5 also shows how the resource
savings due to adaptive dynamics models and RCS-adaptive energy management are related to each other.
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Figure 6: Mean Number of Allocations for Different Filters and Trajectories

target type RCS filter ∆T [s] revisits energie rel.

Cargo worst case KALMAN 3.3 55.1 2828 8.5
IMM-MHT 6.5 32.6 1664 5.0

estimated KALMAN 2.0 90.3 750 2.2
IMM-MHT 4.9 45.0 453 1.4

known 4.9 46.4 334 1

Bomber worst case KALMAN 3.1 60.1 5488 5.5
IMM-MHT 6.4 34.0 2868 2.9

estimated KALMAN 2.2 85.5 2257 2.3
IMM-MHT 5.1 44.2 1095 1.1

known 5.0 45.7 993 1

Fighter worst case KALMAN 2.8 67.3 5786 2.6
IMM-MHT 4.9 43.3 3882 1.7

estimated KALMAN 2.2 85.6 3563 1.6
IMM-MHT 3.9 54.0 2420 1.1

known 3.8 55.1 2226 1

Missile worst case KALMAN 2.1 86.6 8657 1.3
IMM-MHT 4.1 56.1 6593 1

estimated KALMAN 2.2 85.4 9036 1.4
IMM-MHT 4.2 55.4 7042 1.1

known 4.1 56.1 6593 1

Table 2: Gain by RCS-adaptive energy control

In table 2 for all scenarios and processing methods scalar performance measures are summarized: target
revisit intervals (∆T ), sensor allocations required, energy spent for track maintenance (time averages taken
over the tracking time). The last column shows the energy spent by the various methods relative to IMM-
MHT with known RCS. Compared with IMM-MHT (Worst-Case RCS) the gain is: 3.8 (cargo aircraft),
2.6 (Bomber), 1.5 (Fighter), .9 (anti-ship missile). Hence, in the missile-scenario, where the worst-case
assumption is correct, a small loss of performance must be taken into account.
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2 Sensor Fusion for Ground Target Tracking

Ground surveillance aims at near real-time production of a dynamic ground picture. This task comprises track
extraction and track maintenance of single ground moving vehicles and convoys, mobile weapon systems
or military equipment, as well as low-flying targets such as helicopters. As ground target tracking is a
challenging problem all available information sources must be exploited, i.e. the sensor data themselves as
well as background knowledge about the sensor performance and the underlying scenario.

For long-range, wide-area, all-weather, and all-day ground surveillance operating at high data update
rates, GMTI radar proves to be the sensor system of choice (GMTI: Ground Moving Target Indication).
By using airborne sensor platforms in stand-off ground surveillance applications the effect of topographical
screening is alleviated, thus extending the sensors’ field of view. In [12] characteristic problems of signal
processing related to GMTI tracking with STAP radar are discussed. We here discuss selected tracking
aspects, which arise from using more appropriate sensor models and expoiting background information. The
following topics are of particular interest:

• Doppler-Blindness. Even after platform motion compensation by using STAP techniques [13], ground
moving vehicles can well be masked by the clutter notch of the sensor. This physical phenomenon
directly results from the low-Doppler characteristics of ground moving vehicles and causes interfering
fading effects that seriously affect track accuracy and track continuity. Unless appropriately handled,
Doppler-blindness can cause serious problems, which seem to be even more difficult in the presence
of Doppler ambiguities.

• Road-Map Information. Even military targets usually move on road networks, whose topographical
coordinates are known in many cases. Digitized topographical road maps such as provided by Geo-
graphical Information Systems (GIS) should therefore enter into the target tracking and sensor data
fusion process. The problem of battlefield surveillance is not considered here (i.e. off-road targets).

• Sensor Data Fusion. Since a single GMTI sensor on a moving airborne platform can record the
situation of interest merely over short periods of time, sensor data fusion proves to be of particular
importance. The data processing and fusion algorithms used for ground surveillance are closely related
to the statistical, logical, and combinatorial methods applied to air surveillance.

A GMTI radar sensor produces measurements of kinematical target parameters and possibly false returns
caused by residual clutter, e.g.. In addition, measurement errors and sensor parameters are provided. The
resulting tracks represent the kinematical states of the targets along the corresponding accuracies and as
such are prerequisites for producing a ground picture. We here discuss track maintenance for well-separated
vehicles in case of low residual clutter.

The papers [9, 10] are the standard references explicitly devoted to the problem of GMTI tracking with
single and multiple sensors. The impact of sensor modeling on GMTI tracking is is discussed in [18].

2.1 Discussion of an idealized Scenario

Assuming a flat earth Figure 7 shows an idealized scenario with two airborne GMTI sensors observing a
ground vehicle moving with constant speed (15 m/s = 54 km/h) parallel to the x-axis for most of the time.
This situation is typical of stand-off or gap-filling ground surveillance missions. In the second half of the
observation period over ∆tmax = 25 min the target stops for 7 min. Then it speeds up again reaching its initial
velocity. Finally, the target leaves the field of view of sensor 2.

In Table 1 selected sensor and platform parameters are summarized. hp, vp denote the constant height
and speed of the sensor platforms over ground. ∆r, ∆ϕ are the range and azimuth regions covered by
each sensor during observation. The revisit intervals are given by ∆T , while MDV denotes the Minimum
Detectable Velocity, a GMTI-specific sensor parameter being important to ground moving target tracking.
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Sensor hp [km] vp [m/sec] ∆r [km] ∆ϕ [deg] ∆T [sec] MDV [m/sec]
1 10 200 [232, 292] [-128, -67] 15 2
2 1 40 [22, 54] [ 77, 172] 10 2

Table 3: selected sensor and platform parameters

Figure 7: simplified scenario

2.1.1 Doppler-Blindness

Even after platform motion compensation by using STAP-techniques [13], GMTI tracking may remain a
difficult task. Unless appropriately handled, in particular two phenomena can cause problems:

1. Sensor-to-target geometries can occur where targets to be tracked are masked by the clutter notch of
the sensor. This results in a series of missing detections until the geometry is changing again.

2. As stopping targets are indistinguishable from ground clutter, the early detection of a stopping event
itself as well as tracking of ‘stop & go’ targets can be important to military applications.

The impact of these effects on the detection probability is shown in Figure 8 for the scenario previously
introduced. For both sensors we observe deep notches (dashed line: platform 1, dotted line: platform 2).
In the center of these notches the radial velocities of the target and the surrounding ground patch are very
close to each other, thus making target discrimination by Doppler processing (STAP [13]) impossible. This
is particularly true if the target stops.

The dashed and solid lines in Figure 9 denote the radial velocities of ground patches around the target
and target returns, respectively. The area shaded in grey reflects the width of the clutter notchs of the sensors,
which is determined by the individual Minimum Detectable Velocities (MDVs). For each sensor both curves
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Figure 8: detection probability

are closely adjacent to each other indicating that the target is moving at a much lower speed than the sensor
platforms. We notice sliding intersections between the curves. They are responsible for the relatively long
duration of Doppler-blind phases.

2.1.2 GMTI Model

For dealing with this phenomenon we propose a refined model for describing the sensor characteristics
and discuss its benefits for improving the performance of ground target tracking and sensor data fusion.
The model is adapted to STAP techniques in that the detection probability assumed in the tracking process
is described as a function of the GMTI-specific clutter notch. While the current location of the notch is
determined by the kinematical state of the target and the current sensor-to-target geometry, its width is given
by a characteristic sensor parameter (MDV).

By this more detailed information on the sensor performance can be incorporated into the tracking pro-
cess. This in particular permits a more appropriate treatment of missing detections. In other words, infor-
mation on the potential reasons that might have caused the missing detections enters into the tracking filter.
We observed that by this measure the number of lost tracks can significantly be reduced while the track
continuity is improved, finally leading to a more reliable ground picture.

2.1.3 Sensor Fusion

Assuming an idealized processing architecture (centralized data fusion), the mean cumulative revisit interval
∆Tc results from the individual revisit intervals ∆Ti, i = 1, . . . , ns, of ns sensors according to

1
∆Tc

=
ns∑
i=1

1
∆Ti

. (34)
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Figure 9: range rate (ground, target)

For the previous example (ns = 2, ∆T1 = 15 s, ∆T2 = 10 s) we obtain ∆Tc = 6 s. The mean cumulative
detection probability P c

D referring to ∆Tc is given by

P c
D = 1 −

ns∏
i=1

(1 − P i
D)

∆Tc
∆Ti (35)

with P i
D denoting the detection probabilities of the individual sensors, which depend on the corresponding

sensor-to-target geometries. Evidently, the corresponding revisit intervals ∆Ti also enter into this formula,
which describes the mean improvement of the overall detection performance to be expected by sensor data
fusion. The larger the individual revisit interval ∆Ti of sensor i, the smaller is the effect of sensor i on the
collective performance, even if the corresponding individual detection probability P i

D is large. ∆Tc and P c
D

are averaged quantities, by which the expected performance improvement can be predicted in an overall
sense.

Figure 9 shows the mean cumulative detection probability P c
D for the above example (solid line). The

impact of the clutter notches are more or less compensated. Due to the fact that P c
D is related to the mean

cumulative revisit interval ∆Tc = 6 s, being shorter than those of the individual sensors (∆T1 = 10 s, ∆T2 =
15 s), P c

D is smaller than the detection probability of the sensor dominating at that time.

2.2 Tracking Preliminaries

The choice of a suitable coordinate system for describing the underlying sensor/target geometry, the sensor
platform trajectory, and the available a priori information on the dynamical behavior of ground moving
targets are prerequisites to target tracking.
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2.2.1 Coordinate Systems

For the sake of simplicity we consider three coordinate systems in which the underlying physical phenomena
become transparent:

1. Cartesian ground coordinates, where the description of the target and platform kinematics is of a
particularly simple form,

2. the moving Cartesian antenna coordinate system, whose x-axis is oriented along the array antenna of
the GMTI radar mounted on the airborne sensor platform,

3. the sensor coordinate system, in which the measurements of the kinematical target parameters are
described (target range, azimuth, and range-rate).

Furthermore a flat earth is assumed. In the applications the use of coordinates different from those may be
more convenient.

Antenna Coordinates. In ground coordinates the kinematical state xp(t) of a platform moving at a constant
height hp and a constant velocity ṙp = vp(cosϕp, sinϕp, 0)� is given by xp(t) = (rp(t), ṙp)� with rp(t) =
rp(0)+ ṙp t and rp(0) = (xp, yp, hp)�. Let the orientation of the antenna array relative to the platform velocity
ṙp be defined by the direction vector ea = (cosϕa, sinϕa, 0)�. The cases ϕa = 0, π/2 describe side- and
forward-looking array antennas, respectively (SLAR/FLAR). Due to aircraft crab, however, even in case of
side-looking antennas ϕa �= 0 may occur (crab angle). The transforms xak = tg←a[x

g
k; tk], xgk = ta←g[xak; tk]

between the kinematical states xgk, xak in ground/antenna coordinates at time tk , respectively, are given by:

ta←g[xgk; tk] = Ta←g

[
xgk − xp(tk)

]
(36)

tg←a[xak; tk] = Tg←axak + xp(tk) (37)

with Ta←g = T�g←a and Tg←a given by:

Tg←a =
(

Rz(ϕp − ϕa) 0
0 Rz(ϕp − ϕa)

)
, Rz(ϕ) =


 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


.

Sensor Coordinates. Let xak = (rak, ṙ
a
k)� with rak = (xk, yk,−hp)� and ṙak = (ẋk, ẏk, 0)� denote the kine-

matical target state in antenna coordinates and let xk = (rk, ϕk, ṙk, ϕ̇k)� be the corresponding quantity in
sensor coordinates. The non-linear transforms between both coordinate systems are given by:

ts←a[xak] =

(√
x2
k + y2

k + h2
p, arctan

yk
xk

,
xkẋk + ykẏk√
x2
k + y2

k + h2
p

,
xkẏk − ẋkyk

x2
k + y2

k

)�
(38)

ta←s[xk] =
√
r2
k − h2

p

(
cosϕk, sinϕk, −hp,

rkṙk cosϕk

r2
k − h2

p

− ϕ̇k sinϕk,
rkṙk sinϕk

r2
k − h2

p

+ ϕ̇k cosϕk, 0

)�
. (39)

The transforms between ground and sensor coordinates, ts←g[xgk; tk], tg←s[xk; tk], result from the concatena-
tion of these transforms. The calculation of the related JACOBIans, Ts←g[xgk] = ∂ts←g/∂xgk and Tg←s[xk] =
∂tg←s/∂xk, is straightforward.
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2.2.2 Target Dynamics

Let the kinematical state vector of a ground moving target at time tk be given by its current position rgk =
(xgk;1, x

g
k;2, x

g
k;3)� and velocity ṙgk:

xgk = (rgk, ṙ
g
k)� = (xgk;1, . . . , x

g
k;6)�. (40)

Due to the small agility of ground targets, acceleration components are omitted. In the previous scenario
(Figure 7) we in particular have: xgk;3 = x

g
k;6 = 0.

Cartesian Coordinates. In the ground coordinate system the target dynamics is modeled by a linear system
equation with additive white GAUSSian noise. With the quantity Σk|k−1 = vt(1−e−2(tk−tk−1)/θt)1/2 (discussed
below), 3D diagonal matrices J = diag[1, 1, 0], O = diag[0, 0, 0], and vk ∼ N(0, J), a realization close to
the model in the first talk (subsection 2.2.1):

xgk = Fg
k|k−1xgk−1 + Gg

k|k−1vk (41)

with matrices Fg
k|k−1 and Gg

k|k−1 given by:

Fg
k|k−1 =


J (tk − tk−1)J

O e−(tk−tk−1)/θtJ


, Gg

k|k−1 = Σk|k−1

(
O
J

)
. (42)

The modeling parameters vt (limiting speed) and θt (maneuver correlation time) in Σk|k−1 have a clear
meaning. In contrast to the dynamics model used in [9], the model naturally introduces a ‘speed limit’ vt,
while θt may characterize different target types.

Sensor Coordinates. With the non-linear transforms tg←s, ts←g between ground and sensor coordinates, a
first-order Taylor expansion around xgk−1|k−1 and xk−1|k−1 (the state estimates at tk−1 in ground and sensor
coordinates, respectively, using all associated measurements up to and including tk−1) yields a linearized
system equation in the moving sensor coordinate system:

xk = Fk|k−1xk−1 + Gk|k−1vk + uk|k−1 (43)

where:

Fk|k−1 = Ts←g[xgk|k−1]Fg
k|k−1Tg←s[xk−1|k−1], Gk|k−1 = Ts←g[xgk|k−1]Gg

k|k−1

uk|k−1 = fk|k−1[xk−1|k−1] − Fk|k−1xk−1|k−1, xgk|k−1 = Fg
k|k−1tg←s[xk−1|k−1; tk−1]

fk|k−1[xk−1|k−1] = ts←g[Fg
k|k−1tg←s[xk−1|k−1; tk−1]; tk].

2.3 GMTI Sensor Model

In the subsequent considerations Zk = {zik}
nk
n=0 denotes a set of nk sensor reports (frame of observations),

which are detected at time tk (revisit time). In this notation let z0
k be the event that at time tk the sensor

possibly produced no valid target detection.

2.3.1 GMTI Chacteristics

Due to the physical and technical reasons previously discussed, the detection of ground moving targets by air-
borne radar is limited by strong ground clutter returns. This can be much alleviated by STAP techniques [13].
The characteristics of STAP processing, however, directly influence the GMTI tracking performance.
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Main-Lobe Clutter. Let us consider a ground patch located at the position rgc in ground coordinates
(i.e. ṙgc = o), which is illuminated by the main-lobe of the moving STAP radar sensor. In antenna co-
ordinates let r and ϕ denote slant range and azimuth angle of the ground patch related to the Cartesian

position vector rac =
√
r2 − h2

p (cosϕ, sinϕ, 0)�. According to Equation 36 in the moving antenna coordi-
nate system the state vector of the ground patch is given by xac = (rac , ṙ

a
c )� with a non-zero velocity vector

ṙac = −vp(cosϕa, sinϕa, 0)�. The radial velocity of the ground patch therefore directly results from equa-
tion 39:

ṙc(r, ϕ; vp, hp, ϕa) = −vp cos(ϕ − ϕa)
√

1 − (hp/r)2. (44)

Besides the location of the ground patch described by r and ϕ the radial velocity ṙc depends on the parameters
platform speed vp, platform height hp, and the orientation of the antenna with respect to the flight direction
ϕa.

For physical and technical reasons the signal processing for airborne GMTI radar [13] is unable to sep-
arate a ground moving target from the surrounding main-lobe clutter return if the target’s radial velocity is
equal to ṙc, i.e., if its kinematical state vector xk = (rk, ϕk, ṙk, ϕ̇k)� of the target obeys the relation nc(xk) = 0
where the function nc is given by:

nc(xk) = nc(rk, ϕk, ṙk; vp, hp, ϕa) (45)

= ṙk − ṙc(rk, ϕk; vp, hp, ϕa). (46)

In other words, the equation nc(xk) = 0 defines the location of the GMTI-specific clutter notch of the sensor in
the state space of a ground target and as such reflects a fundamental physical/technical fact without implying
any further modeling assumptions.

Qualitative Discussion. An adequate modeling of this phenomenon is important to ground moving target
tracking. Besides being simple enough to be mathematically tractable, the GMTI sensor model must reflect
the following qualitative conclusions:

1. The detection probability of the sensor depends on the kinematical target state and the sensor/target
geometry: PD = PD(xk).

2. PD(xk) is small in a certain region |nc(xk)| < MDV around the clutter notch characterized by the
sensor parameter MDV.

3. Far from the clutter notch, the detection probability depends only on the directivity pattern of the
sensor and the target range.

4. There exists a comparatively narrow transient region between these two domains in the state space of
the ground target.

Quantitative Modeling. In a generic description of the detection performance of GMTI sensors it seems
plausible to write PD = PD(xk) as a product with one factor reflecting the directivity pattern and propagation
effects due to the radar equation [3], pD = pD(rk, ϕk), the other factor being related to the clutter notch. To
this end, let us consider functions of the following form:

PD(rk, ϕk, ṙk) = pd(rk, ϕk)
(

1 − e−
1
2

(
nc (rk,ϕk ,ṙk )

MDV

)2)
. (47)

In this expression the sensor parameter MDV has a clear and intuitive meaning: In the region defined by
|nc(xk)| < MDV we have PD < 1

2 pd. The parameter MDV is thus a quantitative measure of the minimum
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radial velocity with respect to the sensor platform which a ground moving target must at least have to be
detected by the sensor (Minimum Detectable Velocity). The actual size of MDV depends on the particular
signal processor used.

For SWERLING I targets pd is given by: pd(r, ϕ) = pF
1/[1+snr(r,ϕ)] with the false alarm probability pF and

the signal-to-noise ratio snr(r, ϕ) = snr0 D(ϕ) (σ/σ0) (r/r0)−4 according to [3]. Let the sensor’s directivity
pattern be described by D(ϕ) = sin2(ϕ − ϕa).

2.3.2 Convoi Resolution

Since in military ground traffic vehicles often move in convoys, at first view resolution phenomena seem to
be typical of long-range ground surveillance. Due to the asymmetric effect of range and angle resolution,
however, Doppler-blindness in many cases superimposes resolution effects: As soon as convoy targets cease
to be resolvable, they are at the same time buried in the clutter notch and thus escape detection. Vice versa,
resolvable convoy targets are rarely Doppler-screened. A separate modeling of the sensor resolution might
therefore be omitted.

As an example we assume two targets moving in a row along a straight road with 30 km/h as typical of
military applications. Their mutual distance is 50 m. The target/sensor geometry is as depicted in Figure 7.
Let the sensor resolution be given by: αr = 10 m (range), αϕ = 0.1◦ (azimuth), αṙ = 0.5 m/s (range-rate).
Figure 10 shows the detection probabilities of both sensors (solid lines). The width of the notches is larger
than in Figure 8 due to the smaller convoy speed. The dotted lines denote the resolution probabilities Pr of
the sensors modeled according to the discussion in the previous talk (subsection 3.2.3):

Pr = 1 − e− log 2(∆r/αr )2
e− log 2(∆ϕ/αϕ)2

e− log 2(∆ṙ/αṙ )2
. (48)

∆r, ∆ϕ, ∆ṙ are the distances between the targets in sensor coordinates. If Pr is dominated by the angular
resolution (i.e. ∆r and ∆ṙ are small), Doppler-blindness occurs. Outside of the notch the high range/range-
rate resolution guarantees resolved returns. For an approach to track ground moving convoys see [15].

2.4 GMTI Data Processing

According to BAYES’ formula, the processing of the new sensor data Zk received at time tk makes use of the
predicted density p(xk |Zk−1) (previously calculated) and the measurement likelihood function p(Zk, nk|xk).

2.4.1 Likelihood Function

The likelihood function p(Zk, nk|xk) statistically describes what a single frame of reports Zk = {zik}
nk
n=0

at time tk can say about the target state xk . Its particular structure is determines by the current sensor data
frame and the sensor model describing the sensor’s properties. The likelihood function can be written as
a sum over all interpretation hypotheses regarding the origin of the data. For well-separated targets in a
possibly cluttered environment two classes of data interpretations can be identified:

1. The object being considered was not detected, the received sensor data are false.

2. The target was detected, zik is the target measurement, all other returns are false.

For the sake of simplicity let us first consider Doppler-unambiguous measurements. According to the
previous modeling assumptions we obtain up to a factor, which is independent of xk and the measurements
(see the discussion in the previous talk, subsection 3.3.1), the following expression:

p(Zk, nk|xk) ∝
(
1 − PD(xk)

)
ρF + PD(xk)

nk∑
n=1

N
(
znk; Hxk, R

)
(49)
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Figure 10: detection and resolution probability

with ρF denoting the spatial false return density. In this expression the function nc(xk) in the definition of
the detection probability PD(xk) (equation 47) is linearized around the predicted state estimate xk|k−1 =
(rk|k−1, ϕk|k−1, ṙk|k−1, ϕ̇k|k−1)�. We obtain:

nc(xk) ≈ zk −Hkxk (50)

with quantities zk and Hk, which are given by:

zk = nc(xk|k−1) + Hkxk|k−1 (51)

Hk = −∂nc(xk)
∂xk

∣∣∣
xk=xk|k−1

(52)

=


 −vph2

p cosϕk|k−1

r2
k|k−1

√
r2
k|k−1 − h2

p

,
vp sinϕk|k−1

√
r2
k|k−1 − h2

p

rk|k−1
, −1, 0


 . (53)

The notation chosen indicates that the effect of the GMTI-specific clutter notch on the likelihood function
can formally be described by a fictitious measurement zk and a corresponding fictitious measurement matrix
Hk. The real measurements are denoted by zik. By these considerations the detection probability PD(xk) can
thus approximated by using a GAUSSian, which linearly depends on the target’s kinematical state vector xk:

PD(xk) ≈ pD(rk|k−1, ϕk|k−1)
[
1 − MDV√

log 2/π
N
(
zk; Hkxk, MDV2

2 log 2

)]
. (54)

with a fictitious standard deviation of the measurement error related to zk essentially given by the minimum
detectable velocity (MDV), being a characteristic sensor parameter of the STAP radar.
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In order to simplify the notation we introduce quantities znjk , Hnj
k , Rnj defined by:

z01
k = zk, H01

k = Hk, R01 = MDV2

2 log 2

zn0
k = znk, Hn0

k = H, Rn0 = R, n = 1, . . . , nk
zn1
k = (znk, zk)�, Hn1

k = (H,Hk)�, Rn1 = diag
[
R, MDV2

2 log 2

]
, n = 1, . . . , nk.

(55)

We formally introduce R00 = ∞. According to the previous approximation the likelihood function
p(Zk, nk|xk) can therefore be written as a weighted sum of GAUSSians:

p(Zk, nk|xk) ∝
nk∑
n=0

1∑
j=0

π
nj
k N

(
znjk ; Hnj

k xk, Rnj
)

(56)

with weighting factors given by (n = 1, . . . , nk):

π00
k = ρF [1 − pD(rk|k−1, ϕk|k−1)], π01

k = pD(rk|k−1, ϕk|k−1) ρF MDV√
log 2/π

(57)

πn0
k = pD(rk|k−1, ϕk|k−1), πn1

k = −pD(rk|k−1, ϕk|k−1) MDV√
log 2/π

(58)

2.4.2 Filtering Process

According to BAYES’ rule the processing of the new sensor data Zk received at revisit time tk is based on
the predicted density p(xk|Zk−1) and the likelihood function p(Zk, nk|xk). With equation 56 we obtain up to
a normalizing constant:

p(xk |Zk) ∝ p(Zk, nk|xk) p(xk |Zk−1) (59)

∝
nk∑
n=0

1∑
i,j=0

pik−1 π
nj
k N

(
znjk ; Hnj

k xk, Rnj
)
N
(
xk; xik|k−1, Pi

k|k−1

)
. (60)

The product of GAUSSians in Equation 60 can be rewritten according to the following product formula:

N
(
z; Hx, R

)
N
(
x; y, P

)
= N

(
x; Hy, S

)
N
(
x; y + W(z −Hy), P −WSW

)
(61)

where S = HPH� + R, W = PH�S−1 (62)

with compatible vectors and matrices x, y, z, H, P, R. This formula is a consequence of the observation that
the left hand side of Equation 61 can be interpreted as a joint density p(z, x) = p(z|x)p(x). The right hand
side is follows by computing p(x|z) and p(z). We thus obtain p(xk |Zk) as a GAUSSian mixture

p(xk|Zk) ∝
nk∑
n=0

1∑
i,j=0

p
nij
k N

(
xk; xnijk|k, Pnij

k|k
)

(63)

with mixture parameters pnijn , xnijk|k, and Pnij
k|k given by the KALMAN-type following update equations:

p
nij
k = q

nij
k /
∑nk

n=0

∑1
i,j=0 q

nij
k (64)

q0i0
k = pik−1π

00, q
nij
k = pik−1π

nj
k N

(
z
nj
k ; Hnj

k xik|k−1, Snij
k|k−1

)
(65)

x0i0
k|k = xik|k−1 xnijk|k = xik|k−1 + Wnij

k|k−1

(
znjk −Hnj

k xik|k−1

)
(66)

P0i0
k|k = Pi

k|k−1 Pnij
k|k = Pi

k|k−1 −Wnij
k|k−1Snij

k Wnij�
k|k−1 (67)

Wnij
k|k−1 = Pi

k|k−1Hnj�
k Snij−1

k Snij
k = Hnj

k Pi
k|k−1Hnj�

k + Rnj
k|k−1. (68)
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2.4.3 Realization Aspects

The probability density p(xk|Zk) (equation 63) is a mixture with 4(nk + 1) components. If it is propagated
according to the BAYESian formalism, an exponential growth of the number of mixture components seems
to be inevitable.

Following the spirit of the techniques used in standard PDA or IMM methods previously discussed, we
propose a suboptimal approach for keeping the number of mixture components under control, which might
easily be refined if required. Let us first consider the following second-order approximation:

p(xk |Zk) ≈
1∑
i=0

pik pi(xk) with pi(xk) =
1

pik

nk∑
n=0

pnik N
(
xk; xnik , Pni

k

)
(69)

where the quantities pnik , pik , xnik , and Pni
k are given by moment matching.

The mixture components that define the individual densities pi(xk) are related to the data interpretations
due to the uncertainty regarding the origin of the reports. They may be handled by well-established mixture
reduction techniques discussed in the previous talk (subsection 3.5). Provided the clutter density is low,
a second-order approximation of each pi(xk) seems to be reasonable and results in a GAUSSian (standard
PDA). For the sake of simplicity this approach has been used in the numerical results presented below.
Hence the p(xk |Zk) is finally approximated by a normal mixture with two components at each time tk.
The generalization to more refined approximation techniques is straightforward and leads to MHT (Multiple
Hypothesis Tracking).

2.5 Discussion

Figures 11 – 16 provide a qualitative insight into the effect of the refined sensor model on target tracking/data
fusion. While a high adaptivity is evident near the clutter notch, far from the notch no difference to standard
filters is observed.

2.5.1 Effect of GMTI-Modeling

Figures 11a, 11b display the probability density functions resulting from processing the event that a missing
detection occurred near the notch. To show the most interesting features, the densities are projected on the
azimuth/ range-rate plane. While the pdf of the standard tracker (Figure 11a) is identical with the corre-
sponding predicted density, the refined sensor model leads to a bimodal structure (Figure 11b). The broader
peak refers to the possible event that the missing detection has simply statistical reasons as in case of standard
filtering, while the sharper peak behind it reflects the hypothesis that the target was not detected because it
is masked by the clutter notch. The situation that the target is buried in the clutter notch for several revisits
is represented in Figures 12a, 12b. Evidently the pdf of the standard filter totally faded away permitting no
reasonable state estimation (Figure 12a). The refined filter, however, preserved a definite shape (Figure 12b).
This can be explained as follows: Instead of actual sensor data the very information that several successively
missing detections occurred was processed. This event provides a hint to the filter that the kinematical target
state probably obeys a certain relation determined by the clutter notch. Apparently, this piece of evidence
proves to be as valuable as a measurement of one of the components of the target state. Figures 13a, 13b
refer to the event that a detection occurred near the clutter notch. While the standard filter produced a simple
GAUSSian, the refined filter shows a more complex structure. In fact, the pdf is a two-component mixture
whose weighting factors differ in their sign (but sum up to one). The resulting shape permits an intuitive
interpretation: The sensor model inherently takes into account that the target state xk does not lead to a small
value of nc(xk); otherwise the target would not have been detected at all. For this reason, the sharp cut in the
pdf simply indicates the location of the clutter notch.
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Figure 11: (a) standard filter (b) GMTI filter (no detection)

Figure 12: (a) standard filter (b) GMTI filter (within the notch)

Figure 13: (a) standard filter (b) GMTI filter (detection near the notch)
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2.5.2 Gain by Sensor Data Fusion

Figures 14 – 16 show the probability densities of the target position in Cartesian ground coordinates after
filtering. The prolated structure of the pdfs mirrors the predominant impact of cross-range errors. Their
shape is rotated with respect to each other due to the different sensor/target geometries. This effect can be
much more pronounced in other situations. We indicated the true target position. Figures 14a – 16a refer to
a regular tracking situation (after 10 min, see Figures 7, 8). Doppler-blindness occurred for sensor 2 during
the previous revisits. The probability densities shown in Figure 14b – 16b have been calculated at a time
when the target has stopped for 3 min (Figure 8). Evidently in Figures 14b, 15b the dissipation of the density
functions is confined to a particular direction according to the GMTI sensor model. Figures 16a, 16b show
the probability densities obtained by sensor data fusion. In both cases we observe a significant fusion gain.
It is a consequence of the different orientation of the density functions and leads to improved state estimates.
The result for the stopping targets is particularly remarkable. Though no sensor data are available from both
sensors, the very fusion of the sensor output ‘target under track is no longer detected’ implies an improved
target localization. This is a consequence of the different target/sensor geometries.

3 Fusion with Context Information: Road Maps

In many practical cases even military ground vehicles move on roads, whose topographical coordinates are
available up to a certain error (digitized road map information). In this context it seems reasonable to describe
the kinematical state vector xrk of road targets at time tk by its position on the road lk (i.e. the arc length of
the curve) and its scalar speed l̇k: xrk = (lk, l̇k)�. The model for describing the dynamical behavior of road
targets is therefore a 2D version of equation 41. By making use of the related transition density p(xrk |x

r
k−1)

the predicted density in road coordinates is given by p(xrk |Zk−1) =
∫
dxrk−1 p(xrk |x

r
k−1) p(xrk−1|Zk−1).

3.1 Modelling of Roads

A given road through a real road network is mathematically described by a continuous 3D curve R∗ in
Cartesian ground coordinates. For the sake of simplicity the effect of crossroads is not considered here. See
[21, 22] for a more detailed discussion. Let R∗ be parameterized by the corresponding arc length l. The
exploitation of digitized road maps provides the data base for a piecewise linear approximation of the road
curve R∗ : l �→ R∗(l) by a polygonal curve R. Let us furthermore assume that the curve R is characterized
by nr node vectors

sm = R∗(lm), m = 1, . . . , nr. (70)

From the these quantities nr− 1 normalized tangential vectors

tm = (sm+1 − sm)/||sm+1 − sm||, m = 1, . . . , nr − 1 (71)

can be derived. The EUCLIDian distance ||sm+1−sm|| between two adjacent node vectors, however, is usually
not identical with the distance λm = lm+1 − lm actually covered by a vehicle when it moves from sm to sm+1

along the road. Besides the vectors sm the scalar quantities λm ≥ |sm+1 − sm| should therefore enter into the
road model to make it more realistic. The differences σd = |λm − ||sm+1 − sm|| | can evidently serve as a
quantitative measure of the discretization errors we have to deal with. Using the characteristic functions

χm(l) =
{

1 for l ∈ (lm, lm+1)
0 else

, m = 0, . . . , nr, l0 = −∞, lnr+1 =∞ (72)

and s0 = s1, t0 = t1, l0 = l1, tnr = tnr−1, (73)
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Figure 14: (a) tracking (b) target stop (sensor 1)

Figure 15: (a) tracking (b) target stop (sensor 2)

Figure 16: (a) tracking (b) target stop (sensor 1+2)
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Figure 17: Schematic Representation of a Road

we obtain a mathematically simple description of the polygon curve R, by which the road R∗ is approxi-
mated:

R : l �→ R(l) =
nr∑
m=0

[
sm + (l − lm)tm

]
χm(l) (74)

with: R∗(lm) = R(lm) = sm, m = 0, . . . , nr. (75)

3.2 Densities on Roads

The BAYESian formalism previously discussed can directly be applied to road targets, if it is possible to
find a transformation operator Tg←r by which the predicted density p(xrk |Zk−1) in road coordinates can be
transformed into ground coordinates:

p(xgk|Z
k−1) = Tg←r[p(xrk |Z

k−1)]. (76)

When available in ground coordinates, the linearized versions of the transforms ts←g and tg←s (section 2.1)
can be used to represent the densities in sensor coordinates, where the filtering step is performed. To this
end, we write the density p(xgk |Zk−1) as a sum over the nr + 1 road segments considered:

p(xgk |Z
k−1) =

nr∑
m=0

p(xgk, m|Z
k−1) (77)

=
nr∑
m=0

p(xgk |m,Z
k−1) p(m|Zk−1) (78)

=
nr∑
m=0

pmg←r T m
g←r

[
p(xrk |Z

k−1)
]
. (79)

In equation 79 the probability

p(m|Zk−1) =
∫
dxrk p(m, xrk |Z

k−1) (80)

=
∫
dxrk χm(Hrxrk) p(xrk |Z

k−1) (81)

=: pmg←r (82)
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denotes the probability that the target moves on the segment m given the accumulated sensor data Zk−1. The
matrix Hr is defined by Hrxrk = lk. Later on, it will be intuitively interpreted as a fictitious measurement

matrix. Since the density p(xrk |Zk−1) =
∑1

j=0 p
j
k−1 N

(
xrk; xrjk|k−1, Prj

k|k−1

)
is a GAUSSian mixture due to

the GMTI sensor model, the probabilities pmg←r can explicitly be expressed by error functions:

pmg←r = p
j
k−1 (Φ[λ(ljm+1)] −Φ[λ(ljm)]), m = 0, . . . , nr (83)

with:

Φ(λ) = 1/
√

2π
∫λ
−∞

dt exp(−t2/2) (84)

λ(l)j =
l −Hrx

rj
k|k−1√

HrP
rj
k|k−1H�r

. (85)

For the remaining term in equation 79 standard probability reasoning yields:

T m
g←r

[
p(xrk |Z

k−1)
]
= p(xgk|m,Z

k−1) (86)

=
∫
dxrk p(xgk, x

r
k|m,Z

k−1) (87)

=
∫
dxrk p(xgk|x

r
k, m) p(xrk |m,Z

k−1). (88)

3.2.1 Simple Roads

Let us first consider the simple limiting case of a straight road defined by: R(l) = s + lt. Under GAUSSian
assumptions the transform from road to ground coordinates is defined by the normal transition density:
p(xgk+1|x

r
k+1) = N

(
xgk+1; tg←r[xrk+1], σ2

m

)
with the affine transform tg←r[xr] = ( t 0

0 t )xr + ( s−lt
0 ) and σm de-

noting the standard deviation of the mapping error. The transformation of the density p(xrk|Zk−1) into the
ground coordinate system is therefore described by p(xgk |Zk−1) =

∫
dxrk p(xgk |x

r
k) p(xrk |Zk−1). The integra-

tion can explicitly be carried out and preserves the GAUSSian character of the density functions (normal
mixtures). The corresponding inverse is simply provided by a projection of the density p(xgk |Zk−1) on the
road. With these transformations the previous considerations directly apply.

3.2.2 Polygonal Roads

The transition density p(xgk |x
r
k, m) for the road segment m (equation 88) is characterized by road map and dis-

cretization errors (σm, σd), that may vary from segment to segment. Under GAUSSian assumptions regarding
the possible error sources, with the affine transforms tmg←r[xr] = ( tm 0

0 tm
)xr + ( sm−lmtm

0 ) for each individual

road segment m, and the error standard deviation σ2
r = σ2

m + σ2
d, we obtain normal transition densities

p(xg |xr, m) = N
(
xg; tmg←r[xr], σ

2
r

)
. (89)

With these preliminaries, an application of BAYES’ rule to the remaining density in the integrand of equa-
tion 88 yields:

p(xrk |m,Z
k−1) =

p(m|xrk) p(xrk |Zk−1)∫
dxrk p(m|xrk) p(xrk |Zk−1)

(90)

with probabilities p(m|xrk) given by:

p(m|xrk) = χm(Hrxrk). (91)
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Up to now the derivation was exact. Due to the normalization constant, however, the characteristic functions
violate the GAUSSian character of the probability densities. To circumvent this problem we propose the
following normal approximation:

p(m|xrk) ≈ exp[−1
2 (zmr −Hrxr)2/λ2

m] =
√

2πλm N
(
zmr ; Hrxr, λ2

m

)
(92)

with zmr and λ2
m given by:

zmr = 1
2 (lm+1 + lm) (93)

λ2
m =

(lm+1 − lm)2

12
. (94)

The quantities zmr and λ2
m can be interpreted as the mean and variance of a uniform density given by χm(l).

From equation 91 and the product formula (section 4.3) we obtain:

p(xrk|m,Z
k−1) =

1∑
j=0

pmk−1 N
(
xrk; xrmjk|k−1, Prmj

k|k−1

)
(95)

with KALMAN-type update equations for xrmjk|k−1 and Prmj
k|k−1, where zmr , λ2

m are in analogy to a measurement
and a related measurement error variance:

xrmjk|k−1 = xrjk|k−1 + Wmj
r (zmr −Hrx

rmj
k|k−1) (96)

Prmj
k|k−1 = Prmj

k|k−1 −Wmj
r Smj

r Wmj�
r . (97)

with “innovation” covariance matrices Smj
r and “KALMANGain” matrices Wmj

r given by:

Smj
r = HrP

rmj
k|k−1H�r + λ2

m (98)

Wmj
r = Prmj

k|k−1H�r Smj−1

r (99)

The notation chosen indicates that the effect of road map information on the probability density functions
can formally be described by a fictitious measurement, a corresponding measurement matrix, and a fictitious
measurement error. Now the integration in equation88 can be carried out explicitly as in the previously
discussed limiting case. The transformation from road to ground coordinates is thus known. In analogy to
the limiting case of straight roads, the inverse transform is simply provided by individually projecting the
densities p(xgk |m,Zk) on the road (i.e. after the filtering step has been performed). Before the subsequent
prediction is performed, it seem to be reasonable to apply a second-order approximation to the mixture
densities:

p(xrk |Z
k) =

nr∑
m=0

p(m|Zk) p(xrk |m,Z
k) (100)

≈
1∑

i=0

pik N
(
xrk; xrik|k, Pri

k|k
)
. (101)
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